当前位置:育儿知识大全 早教内容页

抛物线切点弦方程抛物线的切点弦方程是什么

对于抛物线y2=2px(p>0)y^{2}=2px(p\gt0)的切点弦方程推导及结论

设抛物线上有两点A(x1,y1)A(x_{1},y_{1})B(x2,y2)B(x_{2},y_{2}),过AABB两点的切线方程分别为:

对于抛物线y2=2pxy^{2}=2px,对其两边关于xx求导得2ydydx=2p2y\frac{dy}{dx}=2p,则dydx=py\frac{dy}{dx}=\frac{p}{y}

过点A(x1,y1)A(x_{1},y_{1})的切线方程为yy1=py1(xx1)y - y_{1}=\frac{p}{y_{1}}(x - x_{1}),因为y12=2px1y_{1}^{2}=2px_{1},整理可得y1y=p(x+x1)y_{1}y = p(x + x_{1})

过点B(x2,y2)B(x_{2},y_{2})的切线方程为y2y=p(x+x2)y_{2}y = p(x + x_{2})

 

设点P(x0,y0)P(x_{0},y_{0})是抛物线外一点,若直线ABAB是点PP关于抛物线y2=2pxy^{2}=2px的切点弦,则AABB两点处的切线都过点P(x0,y0)P(x_{0},y_{0})

所以{y1y0=p(x0+x1)y2y0=p(x0+x2)\begin{cases}y_{1}y_{0}=p(x_{0}+x_{1})\\y_{2}y_{0}=p(x_{0}+x_{2})\end{cases},这表明点A(x1,y1)A(x_{1},y_{1})B(x2,y2)B(x_{2},y_{2})都在直线y0y=p(x0+x)y_{0}y = p(x_{0}+x)上。

所以抛物线y2=2px(p>0)y^{2}=2px(p\gt0)外一点P(x0,y0)P(x_{0},y_{0})的切点弦方程是y0y=p(x0+x)y_{0}y = p(x_{0}+x)

 

 

对于抛物线y2=2px(p>0)y^{2}=-2px(p\gt0)的切点弦方程

同样先求导,由y2=2pxy^{2}=-2px,两边对xx求导得2ydydx=2p2y\frac{dy}{dx}=-2pdydx=py\frac{dy}{dx}=-\frac{p}{y}

按照上述类似的方法,设抛物线上两点A(x1,y1)A(x_{1},y_{1})B(x2,y2)B(x_{2},y_{2}),过AABB的切线方程分别为y1y=p(x+x1)y_{1}y=-p(x + x_{1})y2y=p(x+x2)y_{2}y=-p(x + x_{2})

若点P(x0,y0)P(x_{0},y_{0})是抛物线y2=2pxy^{2}=-2px外一点,其切点弦方程是y0y=p(x0+x)y_{0}y=-p(x_{0}+x)

 

对于抛物线x2=2py(p>0)x^{2}=2py(p\gt0)的切点弦方程

x2=2pyx^{2}=2py两边关于xx求导得2x=2pdydx2x = 2p\frac{dy}{dx}dydx=xp\frac{dy}{dx}=\frac{x}{p}

过抛物线上点A(x1,y1)A(x_{1},y_{1})的切线方程为x1x=p(y+y1)x_{1}x = p(y + y_{1}),过点B(x2,y2)B(x_{2},y_{2})的切线方程为x2x=p(y+y2)x_{2}x = p(y + y_{2})

设点P(x0,y0)P(x_{0},y_{0})是抛物线x2=2pyx^{2}=2py外一点,其切点弦方程是x0x=p(y0+y)x_{0}x = p(y_{0}+y)

 

对于抛物线x2=2py(p>0)x^{2}=-2py(p\gt0)的切点弦方程

x2=2pyx^{2}=-2py求导得2x=2pdydx2x=-2p\frac{dy}{dx}dydx=xp\frac{dy}{dx}=-\frac{x}{p}

经过类似推导,若点P(x0,y0)P(x_{0},y_{0})是抛物线x2=2pyx^{2}=-2py外一点,其切点弦方程是x0x=p(y0+y)x_{0}x=-p(y_{0}+y)

 

总结来说,对于抛物线y2=2px(p0)y^{2}=2px(p\neq0),点P(x0,y0)P(x_{0},y_{0})PP在抛物线外)的切点弦方程是y0y=p(x0+x)y_{0}y = p(x_{0}+x);对于抛物线x2=2py(p0)x^{2}=2py(p\neq0),点P(x0,y0)P(x_{0},y_{0})PP在抛物线外)的切点弦方程是x0x=p(y0+y)x_{0}x = p(y_{0}+y)