当前位置:育儿知识大全 早教内容页

15°的三角函数值是多少啊?

15°的三角函数值如下:

正弦值sin15=sin(4530)\sin15^{\circ}=\sin(45^{\circ}- 30^{\circ})
根据两角差的正弦公式sin(AB)=sinAcosBcosAsinB\sin(A - B)=\sin A\cos B-\cos A\sin B,这里A=45A = 45^{\circ}B=30B = 30^{\circ}
sin45=22\sin45^{\circ}=\frac{\sqrt{2}}{2}

cos45=22\cos45^{\circ}=\frac{\sqrt{2}}{2}

cos30=32\cos30^{\circ}=\frac{\sqrt{3}}{2}

sin30=12\sin30^{\circ}=\frac{1}{2}
sin15=sin(4530)=sin45cos30cos45sin30=22×3222×12=624\sin15^{\circ}=\sin(45^{\circ}-30^{\circ})=\sin45^{\circ}\cos30^{\circ}-\cos45^{\circ}\sin30^{\circ}=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\times\frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}

×23

22

×21=46

2

余弦值cos15=cos(4530)\cos15^{\circ}=\cos(45^{\circ}-30^{\circ})
根据两角差的余弦公式 cos(AB)=cosAcosB+sinAsinB\cos(A - B)=\cos A\cos B+\sin A\sin B
cos15=cos45cos30+sin45sin30=22×32+22×12=6+24\cos15^{\circ}=\cos45^{\circ}\cos30^{\circ}+\sin45^{\circ}\sin30^{\circ}=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\times\frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}

×23

+22

×21=46

+2

正切值tan15=sin15cos15\tan15^{\circ}=\frac{\sin15^{\circ}}{\cos15^{\circ}}
sin15=624\sin15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}

2

cos15=6+24\cos15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}

+2

代入可得:
tan15=6246+24=626+2\tan15^{\circ}=\frac{\frac{\sqrt{6}-\sqrt{2}}{4}}{\frac{\sqrt{6}+\sqrt{2}}{4}}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}

+2

46

2

=6

+2

6

2

,分子分母同时乘以62\sqrt{6}-\sqrt{2}

2

进行化简:

(62)2(6+2)(62)=6212+262=8434=23\begin{align*} &\frac{(\sqrt{6}-\sqrt{2})^2}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}\\ =&\frac{6 - 2\sqrt{12}+2}{6 - 2}\\ =&\frac{8 - 4\sqrt{3}}{4}\\ =&2-\sqrt{3} \end{align*}

+2

)(6

2

)(6

2

)2626212

+24843

23

综上,sin15=624\sin15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}

2

cos15=6+24\cos15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}

+2

tan15=23\tan15^{\circ}=2 - \sqrt{3}