当前位置:育儿知识大全 早教内容页

有关于碳酸钙的化学方程式急!谢谢!

对于双曲线x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1a>0,b>0a\gt0,b\gt0),求其切线方程有以下几种常见情况:

已知切点(x0,y0)(x_0,y_0)的切线方程

若点(x0,y0)(x_0,y_0)在双曲线x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1上,则过该点的切线方程为x0xa2y0yb2=1\frac{x_0x}{a^{2}}-\frac{y_0y}{b^{2}} = 1。推导过程如下:

对双曲线方程x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1两边同时对xx求导:

根据求导公式(Xn)=nXn1(X^n)^\prime = nX^{n - 1},可得2xa22yyb2=0\frac{2x}{a^{2}}-\frac{2y\cdot y^\prime}{b^{2}} = 0

解关于yy^\prime的方程,得到y=b2xa2yy^\prime=\frac{b^{2}x}{a^{2}y}

 

那么在点(x0,y0)(x_0,y_0)处的切线斜率k=b2x0a2y0k = \frac{b^{2}x_0}{a^{2}y_0}

由点斜式方程yy0=k(xx0)y - y_0 = k(x - x_0),可得切线方程为yy0=b2x0a2y0(xx0)y - y_0 = \frac{b^{2}x_0}{a^{2}y_0}(x - x_0)

等式两边同乘a2y0a^{2}y_0得到a2y0(yy0)=b2x0(xx0)a^{2}y_0(y - y_0)=b^{2}x_0(x - x_0)

展开式子得a2y0ya2y02=b2x0xb2x02a^{2}y_0y - a^{2}y_0^{2}=b^{2}x_0x - b^{2}x_0^{2}

因为点(x0,y0)(x_0,y_0)在双曲线上,所以x02a2y02b2=1\frac{x_0^{2}}{a^{2}}-\frac{y_0^{2}}{b^{2}} = 1,即b2x02a2y02=a2b2b^{2}x_0^{2}-a^{2}y_0^{2}=a^{2}b^{2}

b2x02a2y02=a2b2b^{2}x_0^{2}-a^{2}y_0^{2}=a^{2}b^{2}代入上式,化简后得到x0xa2y0yb2=1\frac{x_0x}{a^{2}}-\frac{y_0y}{b^{2}} = 1

 

已知斜率kk的切线方程

设切线方程为y=kx+my = kx + m,将其代入双曲线方程x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1,消去yy得到一个关于xx的一元二次方程:

y=kx+my = kx + m代入x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1,可得:

x2a2(kx+m)2b2=1\frac{x^{2}}{a^{2}}-\frac{(kx + m)^{2}}{b^{2}} = 1

展开并整理得(b2a2k2)x22a2kmxa2(m2+b2)=0(b^{2}-a^{2}k^{2})x^{2}-2a^{2}kmx - a^{2}(m^{2}+b^{2}) = 0

 

因为直线与双曲线相切,所以此一元二次方程的判别式Δ=0\Delta = 0

(2a2km)24(b2a2k2)×[a2(m2+b2)]=0(-2a^{2}km)^{2}-4(b^{2}-a^{2}k^{2})\times[-a^{2}(m^{2}+b^{2})]=0

化简求解mm,得到m=±a2k2b2m = \pm\sqrt{a^{2}k^{2}-b^{2}}

 

则切线方程为y=kx±a2k2b2y = kx\pm\sqrt{a^{2}k^{2}-b^{2}}

,此切线方程成立的条件是kba|k|\geq\frac{b}{a}