当前位置:育儿知识大全 早教内容页

椭圆的通径长公式?椭圆的通径长公式是怎样的,

椭圆的通径长公式为2b2a \frac{2b^{2}}{a}aa为椭圆的长半轴长 ,bb为椭圆的短半轴长)。推导过程如下:

椭圆的标准方程为x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1a>b>0a \gt b \gt 0) ,通径是过椭圆焦点且垂直于长轴的弦。

设椭圆的焦点为F(c,0)F(c,0)c2=a2b2c^2 = a^2 - b^2),当x=cx = c时,代入椭圆方程c2a2+y2b2=1\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,可得:

y2b2=1c2a2y2b2=a2c2a2y2b2=b2a2y2=b4a2y=±b2a\begin{align*} \frac{y^{2}}{b^{2}}&=1 - \frac{c^{2}}{a^{2}}\\ \frac{y^{2}}{b^{2}}&=\frac{a^{2} - c^{2}}{a^{2}}\\ \frac{y^{2}}{b^{2}}&=\frac{b^{2}}{a^{2}}\\ y^{2}&=\frac{b^{4}}{a^{2}}\\ y&=\pm\frac{b^{2}}{a} \end{align*}

则该弦的两个端点纵坐标分别为y1=b2ay_1 = \frac{b^{2}}{a}y2=b2ay_2 = -\frac{b^{2}}{a} ,所以通径长为y1y2=b2a(b2a)=2b2a\vert y_1 - y_2 \vert = \vert\frac{b^{2}}{a} - (-\frac{b^{2}}{a})\vert = \frac{2b^{2}}{a}