当前位置:育儿知识大全 早教内容页

2的平方是多少?

在空间直角坐标系中,求点P(x0,y0,z0)P(x_0,y_0,z_0)到平面Ax+By+Cz+D=0Ax + By + Cz + D = 0的距离公式为:
d=Ax0+By0+Cz0+DA2+B2+C2d = \frac{\vert Ax_0 + By_0 + Cz_0 + D\vert}{\sqrt{A^2 + B^2 + C^2}}

Ax0+By0+Cz0+D

下面为你简单推导这个公式:
设平面α\alpha的方程为Ax+By+Cz+D=0Ax + By + Cz + D = 0,点P(x0,y0,z0)P(x_0,y_0,z_0)是平面α\alpha外一点,在平面α\alpha上任取一点Q(x1,y1,z1)Q(x_1,y_1,z_1),则向量PQ=(x1x0,y1y0,z1z0)\overrightarrow{PQ}=(x_1 - x_0,y_1 - y_0,z_1 - z_0)

=(x1x0,y1y0,z1z0)

平面α\alpha的法向量n=(A,B,C)\vec{n}=(A,B,C)

=(A,B,C)

PP到平面α\alpha的距离dd等于向量PQ\overrightarrow{PQ}

在法向量n\vec{n}

方向上的投影的绝对值。

根据向量投影公式,向量PQ\overrightarrow{PQ}

在法向量n\vec{n}

方向上的投影为PQnn\frac{\overrightarrow{PQ}\cdot\vec{n}}{\vert\vec{n}\vert}

PQ

n

先计算PQn\overrightarrow{PQ}\cdot\vec{n}

n

PQn=A(x1x0)+B(y1y0)+C(z1z0)=Ax1+By1+Cz1(Ax0+By0+Cz0)\begin{align*} \overrightarrow{PQ}\cdot\vec{n}&=A(x_1 - x_0)+B(y_1 - y_0)+C(z_1 - z_0)\\ &=Ax_1 + By_1 + Cz_1-(Ax_0 + By_0 + Cz_0) \end{align*}

n

=A(x1x0)+B(y1y0)+C(z1z0)=Ax1+By1+Cz1(Ax0+By0+Cz0)

因为点Q(x1,y1,z1)Q(x_1,y_1,z_1)在平面Ax+By+Cz+D=0Ax + By + Cz + D = 0上,所以Ax1+By1+Cz1+D=0Ax_1 + By_1 + Cz_1 + D = 0,即Ax1+By1+Cz1=DAx_1 + By_1 + Cz_1=-D

PQn=D(Ax0+By0+Cz0)=(Ax0+By0+Cz0+D)\overrightarrow{PQ}\cdot\vec{n}=-D-(Ax_0 + By_0 + Cz_0)=-(Ax_0 + By_0 + Cz_0 + D)

n

=D(Ax0+By0+Cz0)=(Ax0+By0+Cz0+D)

n=A2+B2+C2\vert\vec{n}\vert=\sqrt{A^2 + B^2 + C^2}

=A2+B2+C2

所以点PP到平面α\alpha的距离d=PQnn=Ax0+By0+Cz0+DA2+B2+C2d = \left\vert\frac{\overrightarrow{PQ}\cdot\vec{n}}{\vert\vec{n}\vert}\right\vert=\frac{\vert Ax_0 + By_0 + Cz_0 + D\vert}{\sqrt{A^2 + B^2 + C^2}}

n

PQ

n

=A2+B2+C2

Ax0+By0+Cz0+D