2025-04-13
在△ABC\triangle ABC△ABC中,A+B+C=πA+B+C = \piA+B+C=π,所以C=π−(A+B)C=\pi-(A + B)C=π−(A+B)。
根据诱导公式cos(π−α)=−cosα\cos(\pi - \alpha)=-\cos\alphacos(π−α)=−cosα,可得:
cosC=cos(π−(A+B))=−cos(A+B)\cos C = \cos(\pi-(A + B)) = -\cos(A + B)cosC=cos(π−(A+B))=−cos(A+B)
再根据两角和的余弦公式cos(α+β)=cosαcosβ−sinαsinβ\cos(\alpha+\beta)=\cos\alpha\cos\beta - \sin\alpha\sin\betacos(α+β)=cosαcosβ−sinαsinβ,进一步将−cos(A+B)-\cos(A + B)−cos(A+B)展开:
cosC=−cos(A+B)=−(cosAcosB−sinAsinB)=sinAsinB−cosAcosB\cos C = -\cos(A + B)= - (\cos A\cos B - \sin A\sin B) = \sin A\sin B - \cos A\cos BcosC=−cos(A+B)=−(cosAcosB−sinAsinB)=sinAsinB−cosAcosB
综上,cosC=sinAsinB−cosAcosB\cos C = \sin A\sin B - \cos A\cos BcosC=sinAsinB−cosAcosB 。